期刊专题

10.3969/j.issn.1671-1815.2021.01.014

一种基于卷积网络的地震探测数据随机噪声去除方法

引用
为有效提高地震数据信噪比,通过卷积神经网络(convolutional neural network,CNN)的方法研究了地震勘探数据去除随机噪声问题.该方法包含17个卷积层,使用线性整流(rectified linear unit,ReLU)激活函数避免梯度消失,使用批量标准化(batch normalization,BN)提高网络的泛化能力.所构建的网络应用残差学习策略,即输入为含噪地震正演叠前数据,输出为CNN网络学习获得的随机噪声.然后从地震记录中减去网络预测的噪声数据,从而达到去除随机噪声的目的.同时,根据地震勘探数据振幅随探测时间衰减的规律,在网络训练过程中进行深度加权,使得CNN对于深部噪声的学习效果更好.网络在PyTorch框架下训练,应用图形处理器并行计算可以有效提高网络训练速度.利用训练好的网络进行去噪实验,结果表明与传统的时空域预测滤波法相比,该网络能更好地压制随机噪声.可见针对地震勘探数据,CNN能够有效提取含噪数据中的噪声信息,证明了该方法在去除随机噪声方面的合理性与有效性.

卷积神经网络、随机噪声、深度加权、残差学习

21

P631

山东省交通科技计划项目2016B20

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

103-108

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn