期刊专题

10.3969/j.issn.1671-1815.2020.24.038

融合边缘信息的合成孔径雷达图像超像素分割算法

引用
针对简单线性迭代聚类(simple linear iterative cluste,SLIC)对含有乘性相干斑噪声的合成孔径雷达(synthetic aper-ture radar,SAR)图像边缘分割不理想的问题,在SLIC基础上提出了一种融合边缘信息的SAR图像超像素分割算法.首先,利用高斯方向平滑对SAR图像进行预处理,从而在抑制乘性相干斑噪声的同时有效保护边缘细节;其次,提出了一种基于指数加权平均比率(ratio of exponential weighted average,ROEWA)算子的改进相似度测量参量,以提高SAR图像的分割精度;最后,采用六边形初始化聚类中心与圆形区域的搜索方式进行局部区域聚类,从而保证了算法复杂度增加的同时,算法的运行时间不会明显变化.实验结果表明:与4种经典超像素算法相比,本文算法生成的超像素边缘更加贴合SAR图像的真实边缘且得到的超像素大小较为均匀.

合成孔径雷达图像、超像素分割、简单线性迭代聚类、方向高斯平滑、指数加权平均比率算子

20

TP391.41(计算技术、计算机技术)

国家自然科学基金;陕西省科技厅重点研发计划;西安市科技计划

2020-10-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

9947-9953

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn