期刊专题

10.3969/j.issn.1671-1815.2020.14.033

基于DBSCAN聚类改进随机森林算法的专利价值评估方法

引用
对于专利价值的不确定性和影响因素的复杂性,以及评估工作中缺乏可操作性强并且科学高效的评估方法等问题,对价值评估指标体系进行分析,并使用随机森林算法选择最有效的指标集,同时基于DBSCAN(density-based spatial clustering of applications with noise)聚类选择高精度且一致性低的决策树子森林改进传统随机森林算法,使用改进前后的两种随机森林模型在专利数据样本上进行实验并比较.结果表明,改进的随机森林模型提升了传统模型的精度,在专利价值评估中具有一定的作用,总体上比较有效地反映了专利的价值度.

专利价值评估、随机森林、聚类、DBSCAN

20

TP391.11(计算技术、计算机技术)

国家重点研发计划2017YFB1401600

2020-06-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

5673-5679

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn