期刊专题

10.3969/j.issn.1671-1815.2020.10.040

利用近红外光谱技术的葵花籽品质分析

引用
葵花籽作为中国需求量很大的油料作物,常用的化学检测方法虽然准确性高,但是时间久,破坏样本完整性,难以实现快速检测.为了研究近红外光谱法快速无损检测葵花籽中蛋白、脂肪及水分含量的准确性,使用454份葵花籽样本近红外光谱数据及蛋白质、水、脂肪三个含量信息为测试对象,随机选取其中383份作为测试集,71份作为验证集,对测试集使用不同的预处理方法之后分别进行PLS(partial least-square method)和BP神经网络建模,并通过验证集对模型进行预测分析.结果发现:①PLS模型预测中发现小波变换的预处理方法对蛋白质含量的预测最好,小波变换的预处理方法对水分含量的预测最好,标准化的预处理方法对脂肪含量的预测最好;②BP神经网络预测中一阶导数+均值中心化对蛋白质含量的预测最好,一阶导数对水分含量的预测最好,一阶导数+标准化对脂肪含量的预测最好.比较两种神经网络模型的预测结果,PLS模型预测精度要高于BP神经网络模型.

近红外光谱技术、葵花籽品质测定、PLS、BP神经网络、预处理方法

20

TS210.1(食品工业)

国家科技支撑计划2011BAF02B02

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

4061-4065

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn