期刊专题

10.3969/j.issn.1671-1815.2020.09.016

基于测井数据的砂岩型铀矿异常识别BP神经网络方法应用

引用
为了快速有效的获取砂岩型铀矿矿集区铀矿异常分布信息,以砂岩型铀矿异常的测井响应特征为理论依据,利用BP神经网络强大的非线性映射和学习能力,以已知铀矿矿化层信息为学习样本,构建3层BP(back propagation)神经网络模型.对松辽盆地大庆长垣南端某铀矿矿集区铀矿钻孔测井数据进行异常层和矿化层的识别提取,并将模型识别结果与已知矿化层信息进行分析对比.结果表明:BP神经网络模型识别准确率达86.55%,效果较好,矿化层的识别结果同已知矿化层信息重合度高,同常规的铀矿异常识别方法相比更加接近铀矿异常分布的形态.此方法能快速有效的获取未知孔的异常信息、降低人为解释工作带来的误差,具有较高的准确性,优势明显.BP神经网络技术应用于铀矿勘察工作中具有良好的前景.

铀矿异常、BP神经网络、分类识别、测井响应、砂岩型铀矿

20

P631.64

中国地质科学院委托项目3S2170034422

2020-05-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

3476-3484

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn