期刊专题

10.3969/j.issn.1671-1815.2020.08.032

基于深度置信网络与数学形态学融合的遥感影像建筑物变化检测

引用
当前人工调查土地资源利用情况具有较高的人力成本且劳动强度大,对其实现自动变化检测具有较高的理论和应用价值.将深度置信网络(deep belief network,DBN)应用于高分辨率遥感影像的建筑物变化检测,但DBN在变化检测时存在由误判现象造成的建筑物完整度欠缺、空间存在噪声等问题,提出DBN与数学形态学融合模型对高分辨率遥感影像建筑物进行变化检测.在遥感影像预处理基础上,标记少量明显的变化与未变化样本,利用搜索窗口从标记的区域获取大量带有标签的样本训练融合模型分类器对建筑物进行变化检测,检测方法准确率为94.76%,召回率为87.63%,F1为91.06%.实验结果表明,该方法可以为建筑物的变化检测提供有效依据.

建筑物变化检测、高分辨率遥感影像、深度置信网络、数学形态学

20

TP79(遥感技术)

自然资源部城市国土资源监测与仿真重点实验室开放基金;自然资源部地面沉降监测与防治重点实验室开放基金

2020-06-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

3157-3163

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn