期刊专题

10.3969/j.issn.1671-1815.2020.04.029

基于肘关节表面肌电信号的负载识别

引用
针对大多数肌电信号只进行特定肢体动作识别而没有对肢体进行外加负载识别的问题,提出一种基于表面肌电信号(surface electromyography,s EMG)的负载识别方法.首先,采用4通道表面电极采集肘关节在不同负载下的s EMG信号;然后,利用时域、频域特征提取方法对s EMG信号进行特征提取构成特征向量;最后,利用支持向量机(support vector maching,SVM)、BP神经网络和RBF神经网络对特征向量进行分类识别.结果表明以时域特征值识别,SVM的识别效果最佳,准确率为96.2%;以频域特征值识别,BP神经网络的识别效果最佳,准确率为87.5%;以时、频域组合特征值识别,RBF神经网络的识别效果最佳,准确率为90.4%.可见通过s EMG信号进行负载识别具有一定的可行性,为s EMG信号的广泛应用奠定基础.

表面肌电信号、负载识别、支持向量机、神经网络

20

TP391.4(计算技术、计算机技术)

国家自然科学基金;贵州省科技计划

2020-04-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

1485-1491

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn