期刊专题

10.3969/j.issn.1671-1815.2020.03.036

基于数据增强的卷积神经网络火灾识别

引用
当前图像识别采用的普遍方法是卷积神经网络方法,但该方法依赖于大数据集,在样本不足时会出现过拟合问题.针对以上问题,根据火灾的背景复杂性和卷积神经网络自动学习特征的优点,提出一种基于数据增强的卷积神经网络火灾识别方法.对少量火灾图片引入数据增强技术,通过搭建一个3层卷积池化层和一个全连接层自动提取火灾特征,使用softmax分类器输出.仿真实验结果表明:原始数据测试集的识别率为95%,损失值发散,提出方法使测试集损失值收敛到0.2,改善了过拟合的问题;对数据增强减少过拟合的原因进行分析,表明对小样本使用卷积神经网络具有重要意义.

特征提取、深度学习、数据增强、火灾识别

20

TP391(计算技术、计算机技术)

国家重点研发计划;陕西省重点研发计划

2020-04-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

1113-1117

暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn