期刊专题

10.3969/j.issn.1671-1815.2020.01.049

基于主成分分析-相关向量机的高速公路路基沉降量预测

引用
为解决高速公路路基沉降量难以获取的难题,提出一种基于主成分分析(principal compohent analysis,PCA)的相关向量机(relevance vector machine,RVM)路基沉降量预测方法.通过主成分分析法将多个易获取的土体常规物理参数降维成少数且独立的变量,借助相关向量机模型反映路基沉降量与4个主成分变量之间的非线性映射关系,建立基于PCA-RVM的高速公路路基沉降量预测模型.将该模型应用于工程实例,在同样学习样本情况下与4种神经网络预测模型对比分析,结果表明:PCA-RVM预测模型通过分析各因素的相关性与贡献率,将多个影响因素合理化为少数主成分变量,在信息筛选方面明显优于其余4种模型;各模型预测结果显示,在路基沉降量预测结果的相对误差及均方差方面,PCA-RVM预测模型均占据较大优势.PCA-RVM模型具有精度高、离散性小、可靠度高等优点,为高速公路路基沉降量预测提供了一种新方法.

主成分分析、相关向量机、高速公路、路基沉降、预测

20

TU473.2;TP393(土力学、地基基础工程)

国家自然科学基金51409051

2020-04-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

312-319

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn