期刊专题

10.3969/j.issn.1671-1815.2020.01.043

跨境电商系统用户数据库智能访问方法优化

引用
为了解决传统方法不适于大规模用户访问,访问准确性差的问题,通过语义指向性匹配和多维索引树编码结合的方法,对跨境电商系统用户数据库智能访问优化方法进行研究.建立跨境电商数据库模型,为数据库智能访问提供模型依据.依据模糊层次聚类提取语义指向性关联特征,在概念格中完成语义指向性相似度计算,依据提取特征,通过相似度匹配实现数据库智能访问,针对其在用户规模较大时影响访问准确性的问题,采用多维索引树编码的方式对其进行优化,实现对跨境电商系统用户数据库智能访问方法的优化.结果 表明:采用所提方法对跨境电商系统时域数据与时频数据语义指向性特征进行提取,能够完成数据语义本体特征指向性聚类,冗余干扰信息被滤除,特征分布聚类性较强;对查全率水平较高情况下的查准率进行测试,发现所提方法在查全率升高时,可令查准率保持在较高的水平,未随查全率的升高有显著下降.可见所提方法访问准确性高.

跨境电商系统、用户数据库、智能、访问

20

TP392(计算技术、计算机技术)

河南省高等学校青年骨干教师培养计划2017GGJS195

2020-04-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

265-270

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

20

2020,20(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn