期刊专题

10.3969/j.issn.1671-1815.2019.36.027

基于PSO-RBF神经网络的串联机械臂逆运动学分析

引用
针对目前基于神经网络对串联机械臂求逆解方法中出现的精度不足和实时性较差的问题,使用粒子群优化(particle swarm optimization,PSO)算法对径向基函数(radial basis function,RBF)神经网络进行结构优化,提出一种基于PSO-RBF神经网络的机械臂逆运动学算法.首先由正运动学模型获取神经网络训练和测试参数样本,经过欧拉角变换在神经网络输入端建立机械臂关节位姿映射关系,然后通过PSO算法对径向基核函数进行参数寻优并对测试样本求解分析,最后获取经逆运动学求解后机械臂的运动轨迹,验证了该算法的可靠性.仿真结果显示,由PSO-RBF神经网络逆运动学算法能够快速得出满足精度要求的关节角度,为进一步机械臂工业控制提供了理论支持.

机械臂、粒子群优化、径向基函数、逆运动学

19

TP241(自动化技术及设备)

2020-04-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

195-200

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(36)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn