期刊专题

10.3969/j.issn.1671-1815.2019.32.035

基于改进型残差网络烟雾图像识别

引用
当前在深度学习上对烟雾图像和视频识别较少,目前存在的问题是烟雾视频图像第一帧识别率低、覆盖范围小、自适应较差的情况.基于卷积神经网络,改变ResNet(残差网络)结构,实现精确的烟雾区域检测.在实验中经过5000张不同烟雾图像的数据集学习,实验结果准确地识别了烟雾图片,为大范围的火灾烟雾报警提供了一种有效方案.

ResNet、卷积神经网络、归一化、金字塔池化

19

TP391.41(计算技术、计算机技术)

山西省回国留学人员科研项目2014-053;山西省第六批"百人计划"特聘教授 资助

2019-12-31(万方平台首次上网日期,不代表论文的发表时间)

共8页

236-243

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(32)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn