期刊专题

10.3969/j.issn.1671-1815.2019.27.036

基于动态区域搜索框及K-means聚类的三车道检测算法

引用
为解决现有车道线检测方法在弯曲道路上识别准确率较差及Hough检测方法耗时较长的问题,提出一种基于动态搜索框及K-means聚类的三车道检测算法.首先,根据逆透视变换(IPM)将感兴趣区域内部转化成鸟瞰图的形式,利用大津法(OTSU)将单帧图像分成前景和背景两部分区域,然后,在图像底部规定区域内进行直方图分析,得到车道线基准点建立初始搜索框,并在其内部使用K-means算法聚类得到车道线候选点,根据建立的车道线直线模型迭代生成搜索框;最后,将得到的车道线候选点根据贝塞尔曲线对其进行拟合得到检测车道线.实验结果表明算法可以很好地检测车道线弯曲部分,算法单帧处理时间达到30 ms,在包含障碍干扰的路况下识别准确率为90.1%.

无人驾驶、K-means、动态搜索框、逆透视变换、大津法、贝塞尔方程

19

TP391.4(计算技术、计算机技术)

山西省自然科学基金201701D121071;山西省高等学校大学生创新创业项目2018377

2019-11-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

253-257

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn