10.3969/j.issn.1671-1815.2019.23.047
基于运行状态识别的无人机航迹预测
无人机航迹预测对于无人机冲突检测、任务规划及异常管控至关重要.在很多情况下难以为无人机这种复杂系统建立精确的物理模型,给基于模型的滤波方法带来一定难度.为解决上述问题,提出一种基于运行状态识别的无人机高斯过程-无味卡尔曼滤波的混合估计方法.首先,利用运行状态识别机制将无人机运行数据分为不同数据段,以确定无人机实时状态并提高预测模型的适应性;然后,根据不同的运行状态,从航迹数据中学习高斯过程递归模型,将其作为无味卡尔曼滤波器的状态转移方程,以实现更高的预测精度;最后,利用动作捕捉系统采集的真实无人机运行数据验证了所提出方法的有效性,利用均方误差检验了方法的精确度.
无人机、航迹预测、无味卡尔曼滤波、动作捕捉、高斯过程回归
19
V249(航空仪表、航空设备、飞行控制与导航)
国家重点研发计划2016YFB0502400
2019-09-23(万方平台首次上网日期,不代表论文的发表时间)
共6页
304-309