期刊专题

10.3969/j.issn.1671-1815.2019.20.011

古叙矿区煤体及其组合的测井曲线识别技术

引用
不同测井曲线对于煤体结构识别具有多解性.为提高判识精度,通过对古叙矿区石宝矿段煤储层特征和常规测井响应特征分析,提取了对煤体结构反应敏感的8条测井曲线,包括自然伽马、井径Ⅰ、井径Ⅱ、深侧向电阻率、浅侧向电阻率、补偿密度、补偿中子、补偿声波,采用BP(back propagation)神经网络算法,通过MTALAB软件,建立了神经元数量为100、训练函数为TRAINLM,适应学习函数为LEARNGDM、误差分析为MSE的二层BP神经网络煤体结构定量识别模型,预测结果与矿区其他井岩心进行对比,结果表明,基于BP神经网络的煤体结构测井识别方法精确度达89%,效果好于传统的测井判识方法.

古叙矿区、测井响应、神经网络、媒体结构

19

P631.8

国家科技重大专项2016ZX05045002;中煤科工集团西安研究院有限公司科技创新基金2018XAYMS20

2019-11-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

77-84

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn