期刊专题

10.3969/j.issn.1671-1815.2019.16.040

多源头网络用户访问信息自适应识别算法

引用
为了解决传统算法学习规则有效性低、无法保证学习性能、匹配模板不全面、容易出现误识别现象的问题,提出一种改进的反向传播(back propagation,BP)神经网络算法研究多源头网络用户访问信息自适应识别问题.对多源头网络用户访问信息进行数据清洗处理,用多源头网络用户访问矩阵对全部会话集合进行描述;在矩阵中引入网络用户位置信息,将得到的信息保存至数据库,构成信息集.将一段时间内用户访问日志构成用户访问路径数据,依据访问请求抵达顺序,将其保存至相应用户缓冲区.把多源头网络用户访问路径当成隐马尔科夫模型的状态转移序列,将网页中信息集当成状态输出符号集,通过离散隐马尔科夫模型对不同源头网络用户访问信息进行分析,提取其特征.将多源头网络用户访问不同种类信息的概率特征作为输入,建立改进BP神经网络算法,得到的输出结果即为多源头网络用户访问信息自适应识别结果.结果表明:采用的BP神经网络算法学习性能优;所提算法识别准确性高.可见所提算法识别结果可靠.

多源头网络、用户、访问信息、自适应、识别

19

TP393.9(计算技术、计算机技术)

2019-07-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

256-261

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn