期刊专题

10.3969/j.issn.1671-1815.2019.16.028

基于迁移学习的危险行为识别方法研究

引用
深度学习中卷积神经网络在行为识别领域有着良好的识别效果,但是由于深度学习需要较大数据集训练模型,而现今公开数据集中危险行为识别相关方向没有大量数据集.针对危险行为识别领域样本少、无法进行深度学习训练等问题,建立了危险行为识别数据集,并采用迁移学习方法对C3 D网络模型进行迁移训练.结果表明,迁移学习后C3 D网络模型对危险行为识别数据集平均识别率达到了83.2%,可以有效识别危险行为动作.

危险行为识别、深度学习、迁移学习、卷积神经网络

19

TP242.6(自动化技术及设备)

国家重点研发计划2017YFC0806503

2019-07-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

187-192

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn