10.3969/j.issn.1671-1815.2019.11.029
基于量子粒子群算法的物流配送中心选址
在物流系统网络中,物流配送中心地址的优化选择不但能够高效及时地完成物资的配送,而且能使得配送成本和仓储成本等运营成本最小化,显著提高物流管理的效率和能力.针对物流配送中心选址最优解的问题,通常采用经典粒子群算法解决,但其有易早熟收敛和仅能得到局部最优解的缺陷.为了克服此缺点,将量子进化算法融入经典粒子群算法中,采用量子理论中独有的叠加态和概率幅特性,粒子最优位置的搜寻采用量子自旋门完成,粒子位置的多样性变异采用量子非门完成,以免出现局部最优解和早熟收敛缺陷.实验结果表明,与经典粒子群算法相比,量子粒子群算法在最优解的搜寻能力和优化效率方面更具有优势,能够优化配送中心的地址选取,从而减少物流运营的总成本,提高物流配送的效率,优化物流管理系统.
物流配送、选址、量子粒子群算法、叠加态、概率幅
19
TP301.6(计算技术、计算机技术)
2019-05-30(万方平台首次上网日期,不代表论文的发表时间)
共5页
183-187