期刊专题

10.3969/j.issn.1671-1815.2019.11.026

基于均值的云自适应鸟群优化算法

引用
针对鸟群算法(bird swarm algorithm,BSA)在求解高维复杂优化问题时,存在收敛速度慢、寻优精度低等缺点,提出了一种基于均值的云自适应鸟群优化算法(a cloud adaptive bird swarm optimization algorithm based on mean,CAMBSA).通过云理论引入惯性权重修正鸟群觅食策略,同时引入"均值"的概念,修改鸟群觅食策略中的"认知部分"和"社会部分",有利于协调种群全局搜索能力,避免算法陷入早熟;为了使算法在迭代后期具有较好的多样性,采用混沌扰动.仿真试验表明,所提出的算法具有较好的收敛速度和寻优精度.

鸟群算法、云理论、惯性权重、均值、混沌

19

TP18(自动化基础理论)

国家自然科学基金61561001;宁夏高等教育一流学科建设项目NXYLXK2017B09

2019-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

167-172

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn