期刊专题

10.3969/j.issn.1671-1815.2019.10.022

基于特定深度内部学习网络提高"不理想"图像分辨率

引用
现有基于深度学习的图像分辨率提升方法中需耗费大量时间训练,且受限于特定的训练数据等问题.引入"零射击"超分辨率概念,可以重复利用已有照片、噪声图像、生物数据以及获取过程未知或非理想的其他图像的相关内部信息,以提高其分辨率.在测试阶段训练一个小的图像特定卷积神经网络,仅需对从输入图像本身提取的示例进行训练;然后通过单个图像内部信息再现,进一步利用图像内部相关信息,以增强图像分辨率.实验结果表明,算法可以加快训练速度且不需要标准训练集,图像分辨率优于现有基于卷积神经网络的超分辨率方法,以及已有的无监督超分辨率方法.

深度学习、卷积神经网络、内部信息、图像分辨率

19

TP399(计算技术、计算机技术)

国家自然科学基金51365017,61463018;江西省自然科学基金20132BAB203020;江西省教育厅科学技术研究重点项目GJJ170491

2019-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

144-149

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

19

2019,19(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn