期刊专题

10.3969/j.issn.1671-1815.2018.32.015

基于随机森林与时空聚类的共享单车站点需求量预测

引用
为方便准确地预测出城市共享单车站点的需求量,根据站点需求量的随机性和时变性,提出了一种基于随机森林和时空聚类的共享单车站点需求量预测模型;该模型研究了时间因子、气象因子以及关联站点对需求量的影响;应用分层聚类对站点进行了时空分析;结合对数优化后的随机森林作为预测器.面向湾区共享单车出行数据进行需求量预测.结果表明:该模型相比极限学习机、支持向量机与随机森林等经典机器学习算法在需求量预测方面有较好的预测结果,可为实际车辆调度提供参考依据.

随机森林、分层聚类、对数优化、需求量预测

18

U491.1(交通工程与公路运输技术管理)

山西省自然科学基金2015011052

2019-01-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

89-94

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(32)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn