期刊专题

10.3969/j.issn.1671-1815.2018.18.013

基于改进加权多源TrAdaBoost算法的无参考图像质量评价方法

引用
基于机器学习的无参考图像质量评价方法依赖于大量训练样本,但训练数据集的构建需要耗费大量人力物力.依据迁移学习理论,面向上述问题,首先提出了一种基于改进加权多源TrAdaBoost(weighted multisource TrAdaBoost,WMTrA)算法.算法的无参考图像质量评价算法采用权重自动更新方式,挖掘辅助图像库中的有价值样本,只需少量目标图像库样本便可以建立准确的图像质量评价模型;然后,将它应用到无参考图像质量评价方法上,检测了其效果.在JPEG,JPEG2000失真图像上的评价结果表明,相比于传统机器学习算法,本文方法能够有效利用现有辅助数据集,减少对目标数据集的数量要求,是一种具有实用性的无参考图像质量评价方法.

无参考图像质量评价、迁移学习、加权多源TrAdaBoost、支持向量机回归

18

TP391.41(计算技术、计算机技术)

国家自然科学基金61503192;江苏省产学研联合创新基金BY2015007-01;南京信息工程大学项目20171030005

2018-08-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

87-93

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn