10.3969/j.issn.1671-1815.2018.17.035
基于k-means与Apriori算法的食物营养成分分析
营养作为人类生活的必要前提,大量患有某种疾病患者或由于工作职业原因对不同营养成分需求各不一致,发现不同食物种类营养成分及含量间的关系具有较强的应用价值.由于各类食物类别所含食物数量不同,针对Apriori算法通过支持度和置信度来衡量关联规则的特点,为克服各类食物数量不一致容易对挖掘结果产生不良影响,设计了一种通过k-means与Apriori算法对多种食物的营养成分及含量的挖掘与分析的方法.首先根据不同食物营养成分含量采用k-means聚类算法进行聚类,将食物数据集划分出了多个互不相交的“簇”,再在各“簇”内通过Apriori算法实现食物营养成分含量之间的关联规则挖掘,其结果表明使用该方法经过聚类后的同一簇内食物营养成分关联程度明显优于直接在数据集中使用Apriori算法进行挖掘,为各类人群的合理膳食及饮食健康提供了重要的参考依据.
k-means聚类、Apriori算法、数据挖掘、营养成分分析
18
TP181(自动化基础理论)
2018-08-21(万方平台首次上网日期,不代表论文的发表时间)
共6页
211-216