期刊专题

10.3969/j.issn.1671-1815.2018.16.034

隐式反馈场景下基于Pairwise排序学习的因子分解机算法

引用
针对隐式反馈场景下的推荐问题以及如何融入用户物品的上下文信息来进行推荐,提出了一种结合Pairwise排序学习与因子分解机的隐式反馈推荐模型.首先借鉴排序学习中Pairwise的方法解决隐式反馈负反馈缺失的问题,然后选择因子分解机作为排序函数来建模用户的上下文信息,从优化物品排序的角度出发建模用户偏好,进而针对不同用户进行个性化推荐.最终实验也表明,所提出模型在排序指标MAP和NDCG上都要优于其他3种对比算法,在解决隐式反馈下推荐问题的同时,可以利用用户的上下文信息进一步提高推荐的准确度.

隐式反馈、上下文、个性化推荐、排序学习、因子分解机

18

TP391.4(计算技术、计算机技术)

国家重点研发计划2017YFB030640X

2018-08-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

217-222

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn