期刊专题

10.3969/j.issn.1671-1815.2018.14.031

基于标签重要程度的协同过滤推荐算法

引用
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法.用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法.最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐.实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题.

协同过滤、推荐算法、隐式反馈、相似度

18

TP301.6(计算技术、计算机技术)

国家级一般项目ZXLG20150036

2018-07-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

172-178

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn