期刊专题

10.3969/j.issn.1671-1815.2018.10.016

室内定位中K-means聚类算法奇异值的优化处理

引用
针对室内定位聚类算法中的奇异值出现较多的场景,按照以往聚类算法大多将其删除或替代为聚类平均值,这往往使得奇异值附近的定位误差陡增.研究采集阶段接入点(acess point,AP)端加入嵌入式滤波处理单元,采用格拉布斯(Grubbs)准则处理采集的信号以减少检测奇异值;然后在定位运算中改进了K-means聚类算法.首先根据模型函数鉴别运算中产生的奇异值,将奇异值线性化处理后由支持向量机(sport vector machine,SVM)对于奇异点进行分类;再将其进行K-means聚类划分.在不剔除奇异值的情况下,使得定位区域中的参考点合理利用,从而提高了整体累计误差的置信水平.研究中将剔除奇异值的K-means聚类算法作为比较对象,实验中采用美国Signal Hound公司的SA44B型频谱仪测量接收机组成传感器网络,可以使得K-means聚类算法的定位精度提高11.3%,证明在实际定位应用中是很有效的.

室内定位、K-means聚类法、支持向量机、Grubbs准则、指纹信息、频谱仪

18

TP391.75(计算技术、计算机技术)

河北省自然科学基金F2014202264;工信部合作资金12-MC-KY-14

2018-05-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

95-99

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn