期刊专题

10.3969/j.issn.1671-1815.2018.09.015

属性受限状态下低维冗余聚类数据快速挖掘方法

引用
针对传统数据挖掘方法存在挖掘精度低、速度慢、占用内存多而不适于实际应用等缺点,提出一种属性受限状态下低维冗余聚类数据挖掘方法.通过计算低维冗余聚类数据的支持度,把低维冗余聚类数据挖掘问题转变成频繁项集挖掘问题;利用支持度与可信度对关联规则产生结果进行评价,并添加属性对其进行限制,以减少无用规则的产生.通过属性位复用方法建立候选区域,产生关联规则集,对符合关联规则集的低维冗余数据进行聚类,实现对其挖掘.实验结果表明,通过所提方法对属性受限状态下低维冗余数据进行挖掘,挖掘速度快,结果可靠.

属性受限、低维、冗余、聚类、数据、挖掘

18

TP311(计算技术、计算机技术)

范学院2014年教师教育研究专项课题2014XJJSJY15

2018-05-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

107-111

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn