期刊专题

10.3969/j.issn.1671-1815.2018.06.045

基于代价敏感的随机森林不平衡数据分类算法

引用
随机森林在分类不平衡数据时,容易偏向多数类而忽略少数类.可以将代价敏感用于分类器的训练;但在传统代价敏感随机森林算法中,代价函数没有考虑样本集实际分布与特征权重,且在随机森林投票阶段,没有考虑基分类器的性能差异.提出一种改进的代价敏感随机森林算法ICSRF,该算法首先根据不平衡数据集的实际分布构造代价函数;并将权重距离引入代价函数,然后根据基分类器的性能采取权重投票,提高分类准确率.实验结果表明,ICSRF算法能有效提高少数类的分类性能,可以较好地处理不平衡数据.

代价敏感、随机森林、不平衡数据、权重距离

18

TP391.75(计算技术、计算机技术)

国家自然科学基金重点项目51437003;吉林省科技计划20160623004TC

2018-05-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

285-290

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

18

2018,18(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn