期刊专题

10.3969/j.issn.1671-1815.2017.36.015

基于样本模糊隶属度归n化约束的松弛模糊C均值聚类算法

引用
模糊C均值聚类算法(FCM)由于样本模糊隶属度归一性的约束,导致FCM算法对噪声数据敏感.提出松弛模糊C均值聚类算法(RFCM),RFCM算法在可能性C均值聚类算法(PCM)目标函数的基础上,放弃了FCM算法单个样本模糊隶属度归一化约束,转为n个样本模糊隶属度之和为n的约束;并利用粒子群算法对样本模糊隶属度进行优化估计,使得模糊指标可拓展为m>0的情况,同时采用梯度法得到RFCM算法聚类中心迭代公式.RFCM理论分析了算法对噪声数据抗噪的原理,解释了RFCM算法模糊指标m>0的合理性,讨论了RFCM算法的收敛性.基于Gauss数据集和UCI数据集的仿真测试验证了所提出算法的有效性.

模糊聚类、归一化约束、模糊指标、粒子群算法、噪声数据

17

TP391.45(计算技术、计算机技术)

国家自然科学基金61170126;常州工学院校级课题YN1305

2018-01-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

96-104

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(36)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn