期刊专题

10.3969/j.issn.1671-1815.2017.27.040

I-Apriori:一种基于Spark平台的改进Apriori算法

引用
针对Apriori算法在第二次迭代过程中产生大量候选集的弊端,在Spark大数据框架下,将Apriori算法进行并行化处理.提出一种基于Spark平台的改进Apriori算法-I-Apriori;该算法利用Spark基于内存计算的抽象对象(RDD)存储频繁项集,在第二次迭代中,通过使用改进的布隆过滤器存储频繁1项集,消除候选集生成,减少数据库扫描次数,提高算法效率.实验结果表明,相比基于Spark平台的Apriori算法进行性能评估,I-Apriori算法具有更优的性能,能够较大程度地提高大数据关联规则挖掘的效率.

内存计算框架、数据挖掘、关联规则算法、布隆过滤器

17

TP311.1(计算技术、计算机技术)

国家自然科学基金61402529

2017-11-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

243-248

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn