期刊专题

10.3969/j.issn.1671-1815.2017.27.023

基于CSP与卷积神经网络算法的多类运动想象脑电信号分类

引用
针对直接利用卷积神经网络(convolutional neural network,CNN)算法对多类运动想象脑电信号分类识别时,因样本量比较少,难以充分训练权值,导致分类效果较差的问题,结合一对多CSP算法与CNN算法对多类运动想象脑电信号进行特征提取与分类.首先,利用CSP算法对多类运动想象脑电信号进行特征提取,形成一维特征数据,作为CNN的输入样本;其次,对传统二维输入样本的CNN结构进行改造,使其适应一维数据的输入样本,对输入样本进行再次特征提取并分类;最后,使用BCI2005desc-Ⅲa的K3b数据进行算法验证;并对不同参数值的确定进行了讨论.算法验证结果表明,单独利用一对多CSP算法得到的分类正确率73%,单独使用CNN算法得到正确率为75%,新算法取得了91.46%的正确率,相比两种原始方法有较大提升.

卷积神经网络、公共空间模式、脑电信号、运动想象

17

R318.04(医用一般科学)

河南省科技厅科技攻关计划项目162102310167

2017-11-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

144-149

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn