期刊专题

10.3969/j.issn.1671-1815.2017.25.040

融合独立分量分析和视觉显著性的烟雾分割检测算法

引用
在烟雾前景分离中,针对传统高斯混合模型分离的前景仍存在大量噪声点的问题,将独立分量分析(ICA)应用于分离烟雾前景,对传统烟雾前景分离算法进行改进.算法通过ICA消除烟雾前景和背景间的二阶和高阶相关,降低非烟雾成分的干扰;并通过基于图的视觉显著性(GBVS)来缩减预判的烟雾前景区域,得到较为纯净的烟雾区域.实验结果表明,与基于混合高斯模型的烟雾检测算法相比,该算法提取的烟雾区域小而集中,主观视觉评价以及客观指标均显示算法的识别效果更优.

烟雾检测、独立分量分析(ICA)、基于图的视觉显著性(GBVS)

17

TN911.73

2017-12-06(万方平台首次上网日期,不代表论文的发表时间)

共5页

246-250

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(25)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn