期刊专题

融合博文内容和行为属性的Page Rank排序算法

引用
针对当前微博影响力度量算法中多集中于用户行为属性,忽略博文、结点本身价值的问题,从微博用户信息出发,以线性加权模型为基础,综合分析用户的行为属性、博文相似度、节点相似度,创建影响力评价指标体系.利用Page Rank算法思想,提出了基于用户行为和博文内容的用户影响度量模型(user influence measurement rank,UMR).通过采用新浪微博真实数据集测试,计算用户的影响力,验证了UMR算法在博文内容的基础上,能客观地反映用户的交互行为,消除僵尸用户对排序的影响,因而更科学、更合理.

微博、线性加权、Page Rank算法、用户影响力、博文内容

17

TP39(计算技术、计算机技术)

江西省研究生创新专项基金YC2016-S316

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

243-248

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn