期刊专题

10.3969/j.issn.1671-1815.2017.15.015

基于MapReduce的并行子空间聚类算法

引用
随着现有数据体量的迅速增长,超大规模中高维数据集的聚类问题变得越来越重要;而现有的子空间聚类算法大多是单机串行执行,处理此类问题效率极低.讨论了利用MapReduce对这类数据集进行并行聚类的方法,提出了基于MapRe-duce的抽样-忽略子空间聚类算法(sample-ignore subspace clustering using MapReduce,SISCMR).该算法将串行聚类算法用作插件,具有很好的通用性.在人造和真实数据集上进行了大量实验,其中最大为0.2 TB的数据集在128个核心的集群中仅用不到10 min就完成了聚类,验证了该算法良好的聚类质量、近线性的可扩展性和高效的聚类性能,证明了基于MapReduce的并行聚类的可行性.

子空间聚类、并行聚类、MapReduce、高维数据

17

TP311.1(计算技术、计算机技术)

2017-11-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

104-110

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn