期刊专题

基于LM算法的相关模糊神经网络及其应用

引用
针对输入变量相关性较高的非线性建模模型,经典模糊神经网络算法存在收敛速度缓慢、模糊规则数大、陷入局部最小值的问题.提出一种基于LM算法的相关模糊神经网络模型;该模型基于聚类思想,构建多变量高斯模糊隶属度函数,将其表示为不可分离的模糊关系来处理相关变量模型;再采用LM优化算法,通过Hessian矩阵和一阶梯度向量同时调整网络参数;并引入Cholesky定理缩减网络参数个数.应用LM算法的模糊神经网络模型实验结果表明,可以加快收敛速度、减少模糊规则数,比经典的模糊神经网络有更好的预测精度.

模糊神经网络、相关性、LM算法、收敛速度、模糊规则数

17

TP183(自动化基础理论)

2017-07-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

260-266

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn