基于LM算法的相关模糊神经网络及其应用
针对输入变量相关性较高的非线性建模模型,经典模糊神经网络算法存在收敛速度缓慢、模糊规则数大、陷入局部最小值的问题.提出一种基于LM算法的相关模糊神经网络模型;该模型基于聚类思想,构建多变量高斯模糊隶属度函数,将其表示为不可分离的模糊关系来处理相关变量模型;再采用LM优化算法,通过Hessian矩阵和一阶梯度向量同时调整网络参数;并引入Cholesky定理缩减网络参数个数.应用LM算法的模糊神经网络模型实验结果表明,可以加快收敛速度、减少模糊规则数,比经典的模糊神经网络有更好的预测精度.
模糊神经网络、相关性、LM算法、收敛速度、模糊规则数
17
TP183(自动化基础理论)
2017-07-12(万方平台首次上网日期,不代表论文的发表时间)
共7页
260-266