期刊专题

10.3969/j.issn.1671-1815.2017.07.035

在线社交网络中用户伪装攻击检测方法研究

引用
当前用户伪装攻击检测方法无法适应动态环境,实时性不高;且需要准确的先验知识,检测精度较低.提出一种新的在线社交网络中用户伪装攻击检测方法,介绍了k最邻近节点(KNN)算法的基本思想,给出KNN算法的实现过程.分析了用户伪装攻击检测与分类的关系,确定在线社交网络中用户伪装攻击检测就是对被检测的未知行为进行分类的过程.针对用户行为,将训练集中正常用户行为的邻居进行排列,通过和k相似的邻居的分类标签对新用户行为类别进行判断,从而实现用户伪装攻击检测.实验结果表明,所提方法不仅检测精度高,而且开销小.

在线社交网络、用户伪装攻击、检测

17

TP393.01(计算技术、计算机技术)

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

194-198

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

17

2017,17(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn