10.3969/j.issn.1671-1815.2017.02.013
低秩矩阵恢复模型改进及其在石油测井中的应用
传统的低秩矩阵恢复模型在去噪过程中通过将观测矩阵分解为低秩部分和稀疏部分达到噪声去除的目的,但该模型要求噪声矩阵必须是稀疏的。然而石油测井所获得的数据中噪声来源复杂,并不能完全保证噪声分布满足稀疏性的要求,使该模型在去噪时表现出一定的局限性,去噪效果不稳定,进而导致后续的数据处理准确率降低。为此,提出将加权范数的思想应用于传统的低秩矩阵恢复模型中,并在惩罚项中将F范数与待恢复矩阵的核范数相结合,构造改进的低秩矩阵恢复模型,使其能够在保证解的稳定性的同时,可以更好地挖掘观测矩阵的低秩性以及增强稀疏矩阵的稀疏性。通过非精确的拉格朗日乘子法分别对改进前后的模型进行求解,并对两种模型去噪后的测井数据分别采用支持向量机( SVM )和相关向量机( RVM)进行油气层识别,结果表明经改进的低秩矩阵恢复模型去噪后的测井数据在保证了油气层识别效率的同时,识别准确率上有了明显提升。
石油测井、数据去噪、低秩矩阵恢复、数据挖掘、加权范数
17
TP301.6(计算技术、计算机技术)
河北省自然科学基金E2016202341。
2017-03-20(万方平台首次上网日期,不代表论文的发表时间)
共8页
74-80,105