10.3969/j.issn.1671-1815.2016.32.017
一种基于特征选择的面向对象遥感影像分类方法
针对GF-1多空间分辨率遥感数据空间信息丰富,传统影像分类方法无法满足实际应用需要的问题,提出了一种基于特征选择的面向对象遥感影像分类方法——object-RJMC算法,即在影像分割及特征提取的基础上,运用ReliefF算法和J-M(Jeffries-Matusita)距离算法去除无关及冗余特征,筛选出适于各类别分类的特征,然后利用CART算法建立分类规则,完成分类过程.以GF-1号2 m、8 m和16 m空间分辨率的三组影像进行算法验证,并与object-CART和pixel-CART影像分类方法进行对比分析.实验结果显示object-RJMC算法的分类精度均高于object-CART和pixel-CART算法的分类精度;且对高空间分辨率的影像分类效果要优于对中低空间分辨率影像的分类效果.该算法减少了特征选择及规则建立的人工干预,克服了以像素为单位的分类算法中由于缺少空间邻域信息而产生孤立、离散、不连通分类结果的问题,可有效地提高GF-1遥感影像分类精度.
面向对象、特征选择、ReliefF算法、J-M(Jeffries-Matusita)距离、CART算法
16
TP751.1(遥感技术)
国家自然科学基金41471310;国土资源部城市土地资源监测与仿真重点实验室开放基金资助课题KF-2015-01-007;三亚市专项科研试制项目2015KS14;海南省科技合作专项资金项目KJH2015-14
2017-02-24(万方平台首次上网日期,不代表论文的发表时间)
共7页
107-113