期刊专题

10.3969/j.issn.1671-1815.2016.32.011

基于深度信念网络的肺结节良恶性分类

引用
肺结节的良恶性分类是计算机辅助诊断系统中最重要的部分,目前常用的分类方法有分类精度低、假阳性高等问题.针对上述问题,把深度信念网络(DBN)引入肺结节的良恶性诊断过程中,提出自定义的DBN分类算法.首先从不同的角度提取肺结节特征,并形成特征向量.然后根据提取的特征对三个隐藏层的节点数进行分析;并构建了一个5层深度信念网络.最终使用训练样本对DBN进行训练;并输出网络的测试结果.对175个病例进行试验,结果表明:算法的分类精度、敏感性和特异性分别为95.3%,92.5%和93.2%,ROC曲线下面积为0.921.与传统算法相比有更好的分类效果,可以给医生提供客观的辅助诊断.

肺结节、良恶性、分类、深度信念网络、层次结构

16

TP39(计算技术、计算机技术)

国家自然科学基金61373100,61540007;国家重点实验室开放基金项目BUAA-VR-15KF02,BUAA-VR-16KF-13

2017-02-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

69-74

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

16

2016,16(32)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn