期刊专题

10.3969/j.issn.1671-1815.2016.31.042

基于最优特征空间构建的随机森林算法在WorldView-2影像分类中的适用性研究

引用
目前面向对象的分类研究中,对于研究区影像的分割尺度问题多以试验者的多次试验以及主观推断为主,缺乏定量化的评价标准。同时,在对遥感影像分类的算法选择以及在分类过程中,有效特征空间的选取均存在一定程度的主观性。针对遥感影像面向对象分类过程中分割尺度选择盲目及分类空间构造主观性较强的问题,以WorldView-2遥感影像数据为例,首先利用改进的全局最优分割尺度的方法获取研究区影像的最优分割尺度,在此基础上选取了研究区分割对象的48个特征,利用OOB误分率对各个特征的重要性排序;然后按重要性顺序以5为步长讨论特征数量对分类精度的影响,构建了用于分类的最优特征空间;最后将采用最优特征空间的随机森林算法获得的最佳分类结果,与面向对象的最邻近像元、决策树以及支持向量机分类算法进行了比较。结果表明,用于分类的特征数量与分类精度之间,并不是简单的正相关关系;与面向对象的最邻近像元、决策树以及支持向量机分类算法相比,利用最优特征空间进行随机森林分类的分类精度最高,表明该方法更适合于高分辨率WorldView-2数据的分类。

WorldView-2影像、面向对象、随机森林、最优分割尺度、特征空间构建

16

TP79(遥感技术)

国家重点研发计划项目2016YFB0502503;中国联合国合作非洲水行动-非洲典型国家和流域水资源生态保护和技术合作2010DFA92800

2016-12-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

218-224

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

16

2016,16(31)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn