期刊专题

10.3969/j.issn.1671-1815.2016.20.037

基于降维Householder变换的多任务运动想象脑电信号特征提取研究

引用
近年来,针对传统的左右手运动想象BCI系统信息传输速率低这一现状,众多脑-机接口(BCI)研究团队开始着眼于对多任务运动想象脑电信号的研究,相比于两类模式识别,多类模式识别能够有效提高BCI系统的信息传输速率.如何准确提取出多任务脑电信号的特征,是实现多任务BCI系统的关键.采用了基于初等反射变换(又称Householder变换)的矩阵近似联合对角化算法,将CSP算法应用于多任务运动想象脑电信号的特征提取,对EEG信号采集效果较好的受试者,四任务运动想象脑电信号的分类准确率提升至80%以上,为在线BCI系统的实现奠定了坚实的基础.

脑-机接口(BCI)、运动想象、初等反射、特征提取

16

TP391(计算技术、计算机技术)

2016-10-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

206-211

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

16

2016,16(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn