10.3969/j.issn.1671-1815.2016.13.015
基于改进LLE算法的机械故障特征压缩与诊断
局部线性嵌入法(locally linear embedding,LLE)是一种典型的流形学习算法.在分析LLE算法的基本计算思路的基础上,提出了一种基于最佳分类效果的k和d综合参数选择方法.此方法综合考虑了故障类内和类间的离散度,并以此作为LLE算法特征压缩效果的评价依据.根据LLE算法的局部线性特征保持的基本特点,提出了一种增量式LLE算法用于柴油机机械故障特征压缩与诊断中.以平均子带能量法构造特征向量空间,子带数目的确定以同种故障类型特征参数间方差最小为准则.实验中,分别使用基于最佳参数选择的LLE算法、传统的主成分分析(principal component analysis,PCA)、增量式LLE算法对柴油机特征向量进行压缩,并对这三种算法的特征压缩结果运用K近邻算法(K-nearest neighborm,KNN)进行故障诊断与分类.结果表明基于最佳参数选择的LLE算法的诊断分类效果要优于传统的PCA方法,增量式LLE算法也取得良好的分类效果.实验表明,对LLE算法进行有关改进可以很好地应用到机械故障特征压缩与诊断中.
改进LLE算法、机械故障诊断、特征压缩、子带能量
16
TP391.4(计算技术、计算机技术)
西安石油大学优秀硕士学位论文培育项目2014yp130410
2016-07-06(万方平台首次上网日期,不代表论文的发表时间)
共6页
86-91