期刊专题

10.3969/j.issn.1671-1815.2015.34.009

基于时序长记忆模型的风电场短期功率预测

引用
随着风电的飞速发展,风电场接入电网的规模日益扩大,随之而来的是对风电功率预测准确性要求的提高,准确的风电功率预测可以更好地利用风能资源,减小风电并网对电网的不利影响.为了提高风电预测的精度,采用最大期望算法(expectation maximization algorithm,EM算法)对风电场功率历史数据进行处理,填补缺失值,替换错误数据,然后采用修正重标极差分析法即修正R/S分析方法分析数据的长记忆性,采用时间序列ARFIMA模型,然后根据预测时刻之前的功率数据,通过贝叶斯统计推断对模型参数进行估计,生成预测模型方程,进而对风电场输出功率进行预测.

风电功率预测、EM算法、时间序列分析法、修正R/S分析法、ARFIMA模型

15

TM614(发电、发电厂)

2016-01-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

50-55

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

15

2015,15(34)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn