期刊专题

10.3969/j.issn.1671-1815.2015.29.012

基于证据数据分类算法的水声目标识别研究

引用
证据分类算法已被广泛应用于模式识别中。针对传统证据近邻算法在证据权重和组合规则上的局限,研究了一种新的基于DSmT的证据K近邻识别算法( DSmT-KNN)。首先在水声目标的各类别训练模板库中,利用目标数据与各近邻的特征相似度来分别构造基本置信指派,并根据K个近邻数据的距离大小对构造的置信指派进行加权。然后利用DSmT规则对加权证据进行融合。最后根据每个类别下融合结果的算术平均值来判断目标的类别属性。通过水声目标实测数据实验,将DSmT-KNN与其他几种常见的方法进行了对比分析,结果表明新算法能有效提高系统的识别准确率。

水声目标、证据推理、K近邻、目标识别、DSmT

TP391.4(计算技术、计算机技术)

陕西省教育厅专项科研计划项目14JK1405

2015-11-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

67-71

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

2015,(29)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn