期刊专题

10.3969/j.issn.1671-1815.2015.29.011

基于 PCA改进的快速 Adaboost算法研究

引用
针对传统的Adaboost算法可能出现在应对较大训练数据集训练时间过长的问题,提出了一种改进的Adaboost 算法———PCAdaboost。改进算法利用PCA方法的降维技术,对训练样本特征提取主要成分,去除输入样本特征间的相关性,提高分类精度。同时,从样本阈值搜索角度考虑了特征值等分和特征值空间维数,给出了阈值快速搜索方法。实验结果表明,该算法在UCI数据集上取得较好的效果。

PCAdaboost、主成分、阈值搜索、降维

TP301.6(计算技术、计算机技术)

国家高技术研究发展计划2015AA042102

2015-11-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

62-66

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

2015,(29)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn