期刊专题

10.3969/j.issn.1671-1815.2015.15.015

叶绿素含量BP反演模型的光谱信息输入因子构建研究

引用
植被叶绿素含量的高光谱反演是当今研究的热点,传统后向传播(BP)神经网络是其常用的一种反演模型.高光谱数据虽然具有精细光谱分辨率,但也造成了大量的信息冗余与噪声;而小波包变换(WPT)可以有效地抑制高光谱数据噪声和压缩信号,同时主成分分析(PCA)能够很好地降低模型输入因子的维数并可简化网络结构.以盆栽玉米为研究对象,在玉米叶片光谱数据对数变换并一阶微分处理的基础上,针对叶绿素含量的BP反演模型,提出了基于相关系数(CC)、WPT和WPT-PCA的输入因子构建方法,并形成了叶绿素含量的CC-BP、PCA-BP及WPT-PCA-BP三种反演模型.通过比较玉米叶片叶绿素含量的实测值与三种BP模型反演结果,表明基于WPT-PCA构建BP模型的输入因子数量虽仅有6个却并不影响其反演精度,也能包含原始光谱的92%信息,且优于基于PCA和传统CC所构建输入因子的BP模型反演能力.

高光谱遥感、叶绿素含量、BP反演模型、输入因子、小波包变换、主成分分析

15

TP751.1(遥感技术)

国家自然科学基金项目41271436;中央高校基本科研业务费专项资金2009QD02

2015-06-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

82-87

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

15

2015,15(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn