期刊专题

10.3969/j.issn.1671-1815.2014.05.055

自组织特征映射网络在模式分类中的应用研究

引用
为了研究自组织特征映射神经网络在对于二维向量进行模式分类时,网络结构的最优化问题,深入研究了SOFM神经网络的结构和算法,说明了SOFM网络的建立方法.以二维向量的模式分类为例,利用所建立的SOFM网络模型对输入的二维向量模式进行分类,研究了输出层节点形状和拓扑结构对分类结果的影响,测试了在不同的训练步数条件下,SOFM模型的权值向量的调整过程和分类效果.仿真结果表明:当网络的输出节点以二维平面形式输出时,长和宽不相等的矩形图的分类性能明显优于正方形图的分类性能,并且在输出节点形式相同的情况下,六边型拓扑结构分类精度明显优于栅格型拓扑结构的SOFM神经网络.

自组织特征映射、人工神经网络、模式分类、拓扑函数、仿真

14

TP391.9(计算技术、计算机技术)

国家自然科学基金61104071

2014-05-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

266-269,275

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

14

2014,14(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn