期刊专题

10.3969/j.issn.1671-1815.2013.31.014

基于概率神经网络的岩石薄片图像分类识别研究

引用
为实现岩石薄片图像孔隙识别的自动化,提出了一种基于聚类分割和神经网络相结合的分类识别方法.首先在图像中应用Kmeans聚类分割算法,将岩石图像分割为背景岩石和目标孔隙两类,并分别提取足够特征进行分类测试,效果良好.其次选100幅岩石图像,每组5幅图像共20组,每组200个数据进行验证.实验表明,建立好的概率神经网络可以准确分类识别出目标孔隙,识别平均正确率为95.12%,已达到实际应用需要.

Kmeans聚类、概率神经网络、岩石薄片图像、模式识别

13

TP391.41;TP183(计算技术、计算机技术)

国家自然科学基金40872087

2013-12-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

9231-9235

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

13

2013,13(31)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn