期刊专题

10.3969/j.issn.1671-1815.2013.28.058

基于改进GA算法优化RBF网络的航空发动机叶片损伤图像识别

引用
通过对航空发动机叶片损伤图像进行识别,可以快速准确地发现叶片损伤状况,有利于对故障进行及时有效的预测.本文对损伤图像进行分割,提取损伤图像特征参数,采用改进GA算法优化RBF网络参数的方法建立航空发动机叶片损伤图像识别模型,对损伤图像特征参数样本进行仿真实验,识别正确率为93.33%,同时与单一RBF网络模型识别结果进行对比分析,结果表明该方法更加优越有效.

图像分割、特征图像提取、GA算法、RBF网络

13

V232.4(航空发动机(推进系统))

航空科学基金2008ZG54024

2013-11-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

8534-8538

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

13

2013,13(28)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn