期刊专题

10.3969/j.issn.1671-1815.2013.16.050

不均衡数据集中KNN分类器样本裁剪算法

引用
针对KNN算法在分类时的样本相似度计算开销大,在处理不均衡数据集时少数类分类误差大的问题,提出一种在不均衡数据集下基于密度的训练样本裁剪算法.对训练样本的各个样本类进行聚类,删除噪声数据并计算每个样本类的平均相似度和样本平均密度,以此获得样本类裁剪的相似度阈值,然后将样本类内相似度小于类相似度阈值的样本进行合并,减少训练样本总数.实验表明,此样本裁剪算法能够在保持KNN算法分类性能基本稳定的前提下,有效地减少分类计算开销,并能在一定程度上提高少数类的分类性能.

KNN分类、聚类、样本裁剪、密度、相似度

13

TP391.4(计算技术、计算机技术)

教育部科学技术研究重点项目208148;海南省自然科学基金项目612136;琼台师范高等专科学校项目qtkz201115

2013-08-12(万方平台首次上网日期,不代表论文的发表时间)

共4页

4720-4723

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

13

2013,13(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn